Dynamic Importance Sampling for Queueing Networks
نویسندگان
چکیده
Importance sampling is a technique that is commonly used to speed up Monte Carlo simulation of rare events. However, little is known regarding the design of efficient importance sampling algorithms in the context of queueing networks. The standard approach, which simulates the system using an a priori fixed change of measure suggested by large deviation analysis, has been shown to fail in even the simplest network setting (e.g., a two-node tandem network). Exploiting connections between importance sampling, differential games, and classical subsolutions of the corresponding Isaacs equation, we show how to design and analyze simple and efficient dynamic importance sampling schemes for general classes of networks. The models used to illustrate the approach include d-node tandem Jackson networks and a two-node network with feedback, and the rare events studied are those of large queueing backlogs, including total population overflow and the overflow of individual buffers.
منابع مشابه
State-Dependent Importance Sampling Simulation of Markovian Queueing Networks
In this paper, a method is presentedfor the efficient estimation of rarecvent (buffer overflow) probabilities in queueing networks using importance sampling. Unlike previously proposed change of measures, the one used here is not static, i.e., it depends on the buffer contenrs at each of the network nodes. The ‘optimal’ statedependent change of measure is determined adaptively during the simuln...
متن کاملImportance sampling for Jackson networks
Rare event simulation in the context of queueing networks has been an active area of research for more than two decades. A commonly used technique to increase the efficiency of Monte Carlo simulation is importance sampling. However, there are few rigorous results on the design of efficient or asymptotically optimal importance sampling schemes for queueing networks. Using a recently developed ga...
متن کاملA Dynamic Importance Sampling Methodology for the Efficient Estimation of Rare Event Probabilities in Regenerative Simulations of Queueing Systems
Importance sampling (IS) is recognized as a potentially powerful method for reducing simulation runtimes when estimating the probabilities of rare events in communication systems using Monte Carlo simulation. When simulating networks of queues, regenerative techniques must be used in order to make the application of IS feasible and efficient. The application of regenerative techniques is also c...
متن کاملAdaptive Importance Sampling Simulation of Queueing Networks
In this paper, a method is presented for the efficient estimation of rare-event (overflow) probabilities in Jackson queueing networks using importance sampling. The method differs in two ways from methods discussed in most earlier literature: the change of measure is state-dependent, i.e., it is a function of the content of the buffers, and the change of measure is determined using a cross-entr...
متن کاملAdaptive state- dependent importance sampling simulation of markovian queueing networks
In this paper, a method is presented for the efficient estimation of rare-event (buffer overflow) probabilities in queueing networks using importance sampling. Unlike previously proposed change of measures, the one used here is not static, i.e., it depends on the buffer contents at each of the network nodes. The ‘optimal’ state-dependent change of measure is determined adaptively during the sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005